The Robotic Sixth Finger: a wearable extra limb to compensate hand function in chronic post stroke patient

Fig. 1. The Robotic Sixth Finger concept. The device is worn like a bracelet and pops up when needed.

This post summarises our research on wearable extra fingers. We started to investigate how to enhance the capability of the human hand by means of wearable robots in 2011 [1]. The goal was to integrate the human hand with an additional robotic finger as represented in Fig. 1. We firstly investigate the potentials of extra-finger in healthy subjects. Such devices could give humans the possibility to manipulate objects in a more efficient way, enhancing our hand grasping dexterity/ability. The first prototype has been presented in [2] together with several examples of the extra-finger applications. Together with the design issues related to portability and wearability of the devices, another critical aspect was integrating the motion of the extra–fingers with that of the human hand. In [3], we presented a mapping algorithm able to transfer to the extra–fingers a part or the whole motion of the human hand. A commercial dataglove was used to measure the hand configuration during a grasping task. A video is available here. Although this control approach guarantees a reliable tracking of the human hand, there was two main drawbacks to be solved. First, the user lacked a feedback of the robotic finger status and could only perceive the force

Fig. 2. The Robotic Sixth Finger together with the vibrotactile interface ring.

exerted by the device mediated by the grasped object. The second problem was related to the approaching phase of the grasp. In fact, the algorithm presented in [3] considers the motion of the whole hand to compute the motion of the extra finger, thus limiting the possibility of the user to make fine adjustments to adapt the finger shape to that of the grasped object. In [4] we addressed these issues by introducing a vibrotactile interface that can be worn as a ring. The human user receives information through the vibrotactile interface about the robotic finger status in terms of contact/no contact with the grasped object and in terms of force exerted by the device. Regarding the grasp approaching phase, we introduced a new control strategy that enables the finger to autonomously adapt to the shape of the grasped object.

Fig. 3. The Robotic Sixth Finger for hand grasping compensation in chronic stroke patients.

The experience gained with healthy subjects was fundamental for the development of Robotic Sixth Finger for compensating hand function in chronic stroke patients. We proposed to use a robotic the Robotic Sixth Finger together with the paretic hand/arm, to constrain the motion of the object. The device can be worn on the user’s forearm by means of an elastic band. The systems acts like a two-finger gripper, where one finger is represented by the Robotic Sixth Finger, while the other by the patient’s paretic limb. The patient can regulate the finger flexion/extension through a wearable switch embedded in a ring worn on the healthy hand. Two possible predefined motions can be chosen to obtain either a precision or a power grasp. In addition to the switch, the proposed ring interface also embeds a vibrotactile motor able to provide the patient with information about the force exerted by the device. The preliminary results with patients are presented in [5] and a video is available here.

Related publications

[1] O. A. Atassi, “Design of a robotic sixth finger for grasping enhancement,” Master’s thesis, Universita` degli Studi di Siena (advisor: Domenico Prattichizzo), December 2011.

[2] D. Prattichizzo, M. Malvezzi, I. Hussain, G. SalviettiThe Sixth-Finger: a Modular Extra-Finger to Enhance Human Hand Capabilities. In Proc. IEEE Int. Symp. in Robot and Human Interactive Communication, Pages 993-998, Edinburgh, United Kingdom, August 2014.

[3] D. Prattichizzo, G. Salvietti, F. Chinello, M. MalvezziAn Object-based Mapping Algorithm to Control Wearable Robotic Extra-Fingers. In Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Pages 1563-1568, Besançon, France, July, 2014.

[4] I. Hussain, L. Meli, C. Pacchierotti, G. Salvietti, D. PrattichizzoVibrotactile haptic fedback for intuitive control of robotic extra fingers. In Proc. IEEE World Haptics Conference (WHC), Chicago, IL, June, 2015.

[5] I. Hussain, G. Salvietti, L. Meli, C. Pacchierotti, D. PrattichizzoUsing the robotic sixth finger and vibrotactile feedback for grasp compensation in chronic stroke patients. In Proc. IEEE/RAS-EMBS International Conference on Rehabilitation Robotics (ICORR), Singapore, Republic of Singapore, 2015. [Finalist for the Best Student Paper Award]

[6] D. Prattichizzo. The interplay between humans and robots in grasping. In Proc. International Symposium on Robotic Research, Sestri Levante, Italy, September, 2015

[7] I. Hussain, G. Salvietti, M. Malvezzi and D. Prattichizzo. Design guidelines for a wearable robotic extra-finger. In proc. IEEE Int. Forum on Research and Technology for Society and Industry, Turin, Italy September, 2015

Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s