Wearable Haptics / Cutaneous devices / Mechano-tactile devices / Skin devices / Cutaneous-Kinesthetic dissociation / Sensory subtraction / Needle insertion: the research so far in our SIRSLab

 

 

This short post summarizes the research on wearable haptics and sensory subtraction in the recent years. The wearable cutaneous devices we have developed are presented in [1]. We have used them in several applications but the most relevant work employing them, which aims at comparing the performance of kinesthetic and cutaneous feedback, is [2]. In [2,3] we analyzed the performance of cutaneous and kinesthetic feedback in a simple teleoperation task (needle insertion in 1 DoF) pointing out how cutaneous feedback can improve the overall safety of the system. After that, we have developed other types of cutaneous devices. For instance the one presented in [4] can be attached to the end-effector of commercial kinesthetic devices (such as the Omegas) in order to be able to easily switch between cutaneous + kinesthetic and cutaneous only.

To get wearability in haptics it is very important to deal with the skin. Devices we are developing are able to apply cutaneous forces without  kinesthetic force feedback. This is of course an issue but it is mandatory if we want to have wearable device. It is a requirement for the design of the devices. Which are the errors we get in using cutaneous only stimulation instead of kinesthetic feedback? To which extent we can avoid kinesthetic feedback ? An answer to this questions has been provided in [6] in cooperation with K. Minamizawa, who developed the gravity grabber which inspired our research on wearable haptics.

 

Publications/Videos/pdf also available on our website (sirslab.dii.unisi.it)

[1] F. Chinello, M. Malvezzi, C. Pacchierotti, D. Prattichizzo. A three DoFs wearable tactile display for exploration and manipulation of virtual objects. In Proc. IEEE Haptics Symposium (HAPTICS), Volume, Pages 71-76, Vancouver, Canada, 2012. [pdf]

[2] D. Prattichizzo, C. Pacchierotti, G. Rosati. Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Transactions on Haptics, PrePrint available on IEEEXplore, 2012. [pdf]

[3] C. Pacchierotti, F. Chinello, D. Prattichizzo. Cutaneous device for teleoperated needle insertion. In Proc. 4th IEEE RAS EMBS Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob), Pages 32-37, Rome, Italy, 2012. [pdf]

[4] C. Pacchierotti, F. Chinello, M. Malvezzi, L. Meli, D. Prattichizzo. Two finger grasping simulation with cutaneous and kinesthetic force feedback. In Haptics: Perception, Devices, Mobility, and Communication. Eurohaptics 2012, Lecture Notes in Computer Science, Pages 373-382, Tampere, Finland, 2012. [video] [pdf]

[5]  K. Minamizawa, D. Prattichizzo, S. Tachi. Simplified Design of Haptic Display by Extending One-point Kinesthetic Feedback to Multipoint Tactile Feedback. In IEEE Haptic Symposium, Pages 257-260, Waltham, Massachusetts, USA, 2010. [video] [pdf]

 

_DP

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s